621 research outputs found

    Physiological Responses and Physical Performance during Football in the Heat

    Get PDF
    PURPOSE: To examine the impact of hot ambient conditions on physical performance and physiological responses during football match-play. METHODS: Two experimental games were completed in temperate (∼ 21°C; CON) and hot ambient conditions (∼ 43°C; HOT). Physical performance was assessed by match analysis in 17 male elite players during the games and a repeated sprint test was conducted after the two game trials. Core and muscle temperature were measured and blood samples were obtained, before and after the games. RESULTS: Muscle and core temperatures were ∼ 1°C higher (P<0.05) in HOT (40.3 ± 0.1 and 39.5 ± 0.1°C, respectively) compared to CON (39.2 ± 0.1 and 38.3 ± 0.1°C). Average heart rate, plasma lactate concentration, body weight loss as well as post-game sprint performance were similar between the two conditions. Total game distance declined (P<0.05) by 7% and high intensity running (>14 km ⋅ h(-1)) by 26% in HOT compared to CON), but peak sprint speed was 4% higher (P<0.05) in HOT than in CON, while there were no differences in the quantity or length of sprints (>24 km ⋅ h(-1)) between CON and HOT. In HOT, success rates for passes and crosses were 8 and 9% higher (P<0.05), respectively, compared to CON. Delta increase in core temperature and absolute core temperature in HOT were correlated to total game distance in the heat (r = 0.85 and r = 0.53, respectively; P<0.05), whereas, total and high intensity distance deficit between CON and HOT were not correlated to absolute or delta changes in muscle or core temperature. CONCLUSION: Total game distance and especially high intensity running were lower during a football game in the heat, but these changes were not directly related to the absolute or relative changes in core or muscle temperature. However, peak sprinting speed and execution of successful passes and crosses were improved in the HOT condition

    Association between congenital toxoplasmosis and preterm birth, low birthweight and small for gestational age birth.

    No full text
    OBJECTIVE: To determine the association between congenital toxoplasmosis and preterm birth, low birthweight and small for gestational age birth. DESIGN: Multicentre prospective cohort study. SETTING: Ten European centres offering prenatal screening for toxoplasmosis. POPULATION: Deliveries after 23 weeks of gestation in 386 women with singleton pregnancies who seroconverted to toxoplasma infection before 20 weeks of gestation. Deliveries after 36 weeks in 234 women who seroconverted at 20 weeks or later, and tested positive before 37 weeks. METHODS: Comparison of infected and uninfected births, adjusted for parity and country of birth. MAIN OUTCOME MEASURES: Differences in gestational age at birth, birthweight and birthweight centile. RESULTS: Infected babies were born or delivered earlier than uninfected babies: the mean difference for seroconverters before 20 weeks was -5.4 days (95% CI: -1.4, -9.4), and at 20 weeks or more, -2.6 days (95% CI: -0.5, -4.7). Congenital infection was associated with an increased risk of preterm delivery when seroconversion occurred before 20 weeks (OR 4.71; 95% CI: 2.03, 10.9). No significant differences were detected for birthweight or birthweight centile. CONCLUSION: Babies with congenital toxoplasmosis were born earlier than uninfected babies but the mechanism leading to shorter length of gestation is unknown. Congenital infection could precipitate early delivery or prompt caesarean section or induction of delivery. We found no evidence for a significant association between congenital toxoplasmosis and reduced birthweight or small for gestational age birth

    Recreational soccer is an effective health-promoting activity for untrained men

    Get PDF
    Copyright BMJ publishing GroupTo examine the effects of regular participation in recreational soccer on health profile, 36 healthy untrained Danish men aged 20-43 years were randomised into a soccer group (SO; n=13), a running group (RU; n=12) and a control group (CO; n=11). Training was performed for 1 h two or three times per week for 12 weeks; at an average heart rate of 82% (SEM 2%) and 82% (1%) of HRmax for SO and RU, respectively. During the 12 week period, maximal oxygen uptake increased (p < 0.05) by 13% (3%) and 8% (3%) in SO and RU, respectively. In SO, systolic and diastolic blood pressure were reduced (p < 0.05) from 130 (2) to 122 (2) mm Hg and from 77 (2) to 72 (2) mm Hg, respectively, after 12 weeks, with similar decreases observed for RU. After the 12 weeks of training, fat mass was 3.0% (2.7 (0.6) kg) and 1.8% (1.8 (0.4) kg) lower (p < 0.05) for SO and RU, respectively. Only SO had an increase in lean body mass (1.7 (0.4) kg, p < 0.05), an increase in lower extremity bone mass (41 (8) g, p < 0.05), a decrease in LDL-cholesterol (2.7 (0.2) to 2.3 (0.2) mmol/l; p < 0.05) and an increase (p < 0.05) in fat oxidation during running at 9.5 km/h. The number of capillaries per muscle fibre was 23% (4%) and 16% (7%) higher (p < 0.05) in SO and RU, respectively, after 12 weeks. No changes in any of the measured variables were observed for CO. In conclusion, participation in regular recreational soccer training, organised as small-sided drills, has significant beneficial effects on health profile and physical capacity for untrained men, and in some aspects it is superior to frequent moderate-intensity running

    Cooling interventions for athletes: An overview of effectiveness, physiological mechanisms, and practical considerations.

    Get PDF
    Exercise-induced increases in core body temperature could negative impact performance and may lead to development of heat-related illnesses. The use of cooling techniques prior (pre-cooling), during (per-cooling) or directly after (post-cooling) exercise may limit the increase in core body temperature and therefore improve exercise performance. The aim of the present review is to provide a comprehensive overview of current scientific knowledge in the field of pre-cooling, per-cooling and post-cooling. Based on existing studies, we will discuss 1) the effectiveness of cooling interventions, 2) the underlying physiological mechanisms and 3) practical considerations regarding the use of different cooling techniques. Furthermore, we tried to identify the optimal cooling technique and compared whether cooling-induced performance benefits are different between cool, moderate and hot ambient conditions. This article provides researchers, physicians, athletes and coaches with important information regarding the implementation of cooling techniques to maintain exercise performance and to successfully compete in thermally stressful conditions

    Biochemical analysis of novel NAA10 variants suggests distinct pathogenic mechanisms involving impaired protein N-terminal acetylation

    Get PDF
    NAA10 is the catalytic subunit of the N-terminal acetyltransferase complex, NatA, which is responsible for N-terminal acetylation of nearly half the human proteome. Since 2011, at least 21 different NAA10 missense variants have been reported as pathogenic in humans. The clinical features associated with this X-linked condition vary, but commonly described features include developmental delay, intellectual disability, cardiac anomalies, brain abnormalities, facial dysmorphism and/or visual impairment. Here, we present eight individuals from five families with five different de novo or inherited NAA10 variants. In order to determine their pathogenicity, we have performed biochemical characterisation of the four novel variants c.16G>C p.(A6P), c.235C>T p.(R79C), c.386A>C p.(Q129P) and c.469G>A p.(E157K). Additionally, we clinically describe one new case with a previously identified pathogenic variant, c.384T>G p.(F128L). Our study provides important insight into how different NAA10 missense variants impact distinct biochemical functions of NAA10 involving the ability of NAA10 to perform N-terminal acetylation. These investigations may partially explain the phenotypic variability in affected individuals and emphasise the complexity of the cellular pathways downstream of NAA10.publishedVersio
    corecore